
ECE 204 Numerical methods

Douglas Wilhelm Harder, LEL, M.Math.
dwharder@uwaterloo.ca

dwharder@gmail.com

Approximating a point using
least-squares best-fitting polynomials

Introduction

• In this topic, we will

– Discuss evaluating a least-squares best-fitting polynomial
at a point

– Describe how to find the coefficients of that polynomial

– Look at the change in run time

• We’ll reduce the run time to O(1)!

– Observing the differences between linear and quadratic
interpolating polynomials

Approximating a point using least-squares best-fitting polynomials

2

Review

• From the main discussion:

– Suppose we have found a least-squares best-fitting linear
polynomial passing through a set of given noisy points

• We can thus evaluate the linear polynomial at any point on
the line

Approximating a point using least-squares best-fitting polynomials

3t5t4t3t2t1

y1

y2

y3

y4

y5

a1t + a0

Review

• Problem:

– Finding the least-squares best-fitting
polynomial requires calculating and
solving these systems of linear
equations:

Approximating a point using least-squares best-fitting polynomials

4t5t4t3t2t1

y2

y3

y4

y5

2

1 1 11

0

1 1

n n n

k k k k

k k k

n n

k k

k k

t t t y
a

a
t n y

  

 

   
   

 
    
    
   
   

  

 

4 3 2 2

1 1 1 1

2

3 2

1

1 1 1 1

0

2

1 1 1

n n n n

k k k k k

k k k k

n n n n

k k k k k

k k k k

n n n

k k k

k k k

t t t t y

a

t t t a t y

a

t t n y

   

   

  

   
   
    
    

    
    
    

   
   

   

   

  

Do not memorize these square
matrices or the target vector
- Understand they are the result

of calculating ATA and ATy

y1
a1t + a0

a2t
2 + a1t + a0

Equally spaced samples

• Suppose the t-values are equally spaced:

tk = t0 + kh

• If the most recent reading is tn and we are fitting
the last N + 1 points, the t-values are tn – N , …, tn

– This requires new matrices and target vectors to be
calculated with each time step:

– As tn becomes large, the condition number grows ever larger

Approximating a point using least-squares best-fitting polynomials

5

2

0 0 01

0

0 0

1

N N N

n k n k n k n k

k k k

N N

n k n k

k k

t t t y
a

a
t N y

   

  

 

 

   
   

 
    
       
   

  

 

Equally spaced samples

• Suppose our most recent reading is tn,
so we are interested in the behavior around this point

• We will shift and scale time tn to the origin with a time step of 1

tn → 0

tn–1 → –1

⋮

tn–N → –N

• Thus, t will be mapped to and specifically,

– Because we are interested either in:

• What happened in the most recent time step, between tn–1 and tn , or

• What will happen in one or time steps, between tn and tn+1

our values our discrete time are –1 < d ≤ 1

Approximating a point using least-squares best-fitting polynomials

6

nt t

h
d




0–1–2–3–4

tntn–1tn–2tn–3tn–4

nt hd d

Equally spaced samples

• There are many benefits:

– We will be evaluating least-squares best-fitting polynomials
with small values of d

– The matrices become fixed integer matrices

• They are only dependent on N:

Approximating a point using least-squares best-fitting polynomials

7

2

0 0

0

(1)(2 1) (1)

6 2

(1)
11

2

N N

k k

N

k

N N N N N
k k

N N
Nk N

 



         
    
        

  

 



2 2 2
4 3 2

0 0 0

2 2
3 2

0 0 0

2

0 0

(1)(2 1)(3 3 1) (1) (1)(2 1)

30 4 6

(1) (1)(2 1) (1)

4 6 2

(1)(2 1) (1)
11

6 2

N N N

k k k

N N N

k k k

N N

k k

N N N N N N N N N N
k k k

N N N N N N N
k k k

N N N N N
Nk k N

  

  

 

         
    

   
      

       
   

     
     

  

  

  

 

Equally spaced samples

• Consider this example with N = 4:
>> N = 4;

>> A = vander(-N:0, 2);

>> cond(A)

ans = 4.738720018687270

>> inv(A'*A)*A'

ans =

-0.2 -0.1 0 0.1 0.2

-0.2 0.0 0.2 0.4 0.6

Approximating a point using least-squares best-fitting polynomials

80–1–2–3–4

yn–4

yn–3

yn–2

yn–1

yn

This Matlab code is provided for
demonstration purposes and is not
required for the examination.

Equally spaced samples

• Thus, we have that

– More simply, we have that

Approximating a point using least-squares best-fitting polynomials

90–1–2–3–4

 

4

3
11 T T

2

0

1

0.2 0.1 0 0.1 0.2

0.2 0 0.2 0.4 0.6

n

n

n

n

n

y

y
a

A A A y
a

y

y










 
 
     
     

    
 
 
 

y

1 4 3 1

0 4 2 1

0.2 0.1 0.1 0.2

0.2 0.2 0.4 0.6

nn n n

nn n n

ya y y y

ya y y y

  

  

    

    

yn–4

yn–3

yn–2

yn–1

yn

a1t + a0

Equally spaced samples

• If the data is noisy, yn is not even a good approximation of the
current value y(tn)

– Instead, evaluate the least-squares linear polynomial at t = 0,

so y(tn) is best approximated by a0

Approximating a point using least-squares best-fitting polynomials

100–1–2–3–4

a1t + a0

yn–4

yn–3

yn–2

yn–1

yn

4 2 10.2 0.2 0.4 0.6 nn n n
yy y y     

1

Equally spaced samples

• We can also estimate the value around tn:

– Given , then if , then

• Recall that least-squares allows us to extrapolate into the future

– Then, y(tn + d h) is best approximated by a0 + a1d

– Specifically, y(tn+1) is approximated by a0 + a1

Approximating a point using least-squares best-fitting polynomials

110–1–2–3–4

a1t + a0

yn–4

yn–3

yn–2

yn–1

yn

1

nt t

h
d




1 1n nt t t   1 1d  

Equally spaced samples

• Finding the coefficients is always fast:

– These can be pre-calculated and programmed into the algorithms

– In all cases, a0 and a1 are linear combinations of the y values
>> N = 8; # Nine points

>> A = vander(-N:0, 2);

>> inv(A'*A)*A' # Solving A'*A*a = A'*y, calculate

ans =
-0.06667 -0.05000 -0.03333 -0.01667 0.00000 0.01667 0.03333 0.05000 0.06667

-0.15556 -0.08889 -0.02222 0.04444 0.11111 0.17778 0.24444 0.31111 0.37778

>> N = 9; # Ten points

>> A = vander(-N:0, 2);

>> inv(A'*A)*A' # Solving A'*A*a = A'*y, calculate

ans =
-0.054545 -0.042424 -0.030303 -0.018182 -0.0060606 0.0060606 0.018182 0.030303 0.042424 0.054545

-0.14545 -0.090909 -0.036364 0.018182 0.072727 0.12727 0.18182 0.23636 0.29091 0.34545

Approximating a point using least-squares best-fitting polynomials

12

This Matlab code is provided for
demonstration purposes and is not
required for the examination.

Equally spaced samples

• Note that because these are integer matrices,
we can use some of the properties of such matrices

>> N = 9;

>> A = vander(-N:0, 2); # Ten points

>> detAtA = round(det(A'*A))

detA = 825

>> round(detAtA*inv(A'*A)*A')

ans =

-45 -35 -25 -15 -5 5 15 25 35 45

-120 -75 -30 15 60 105 150 195 240 285

>> ans/detAtA

ans =
-0.054545 -0.042424 -0.030303 -0.018182 -0.0060606 0.0060606 0.018182 0.030303 0.042424 0.054545

-0.14545 -0.090909 -0.036364 0.018182 0.072727 0.12727 0.18182 0.23636 0.29091 0.34545

Approximating a point using least-squares best-fitting polynomials

13

This Matlab code is provided for
demonstration purposes and is not
required for the examination.

• Consider this data from a system that is clearly accelerating

– Using a least-squares linear polynomial would be wrong

– We should use a
least-squares quadratic polynomial

Linear or quadratic least-squares

Approximating a point using least-squares best-fitting polynomials

14

Equally spaced samples

• We can do the same for a least-squares quadratic:

Approximating a point using least-squares best-fitting polynomials

150–1–2–3–4

  
2

1
T T

1

0

a

a A A A

a



 
 

 
 
 

y

yn–4

yn–3

yn–2

yn–1

yn

Equally spaced samples

• We can do the same for a least-squares quadratic:

– More simply, we have that

Approximating a point using least-squares best-fitting polynomials

160–1–2–3–4

 
   

4

2 3
1

T T T

1 2T

0 1

100 50 100 50 100
1 1

det 260 270 400 130 540
700det

60 100 60 180 620

n

n

n

n

n

y

a y

a A A A A A y
A A

a y

y










 
 

      
                    

 
 

y

1 1 1 1 1
2 4 3 2 17 14 7 14 7

13 27 13 274
1 4 3 2 135 70 7 70 35

3 3 9 311
0 4 3 2 135 7 35 35 35

nn n n n

nn n n n

nn n n n

ya y y y y

ya y y y y

ya y y y y

   

   

   

    

    

    

yn–4

yn–3

yn–2

yn–1

yn

a2t
2 + a1t + a0

This exemplifies an idea,
it is not required for this course.

Equally spaced samples

• As before, our best approximation of the actual current value is
evaluating this least-squares quadratic at t = 0

y(tn) is best approximated by a0

Approximating a point using least-squares best-fitting polynomials

170–1–2–3–4

3 3 9 311
4 3 2 135 7 35 35 35 nn n n n

yy y y y      

1

yn–4

yn–3

yn–2

yn–1

yn

a2t
2 + a1t + a0

Equally spaced samples

• Again, we can estimate the value around tn:

– Given , then if , then

• Recall that least-squares allows us to extrapolate into the future

– Then, y(tn + d h) is best approximated by (a2d + a1d  a0

– Specifically, y(tn+1) is approximated by a2 + a1 + a0

Approximating a point using least-squares best-fitting polynomials

180–1–2–3–4 1

yn–4

yn–3

yn–2

yn–1

yn

a2t
2 + a1t + a0

nt t

h
d




1 1n nt t t   1 1d  

O(1) run time?

• Issue:

– This is still a single O(n) calculation with each step

– You may note that there is a particular pattern

– With the next step, the coefficients are now

– Let , and so we update in O(1) time:

Approximating a point using least-squares best-fitting polynomials

19

1 4 3 1

0 4 2 1

0.2 0.1 0.1 0.2

0.2 0.2 0.4 0.6

nn n n

nn n n

ya y y y

ya y y y

  

  

    

    

11 3 2

10 3 1

0.2 0.1 0.1 0.2

0.2 0.2 0.4 0.6

nn n n

nn n n

ya y y y

ya y y y

 

 

    

    

3 2 1n n n ns y y y y     

11 1 40.2 0.1 0.2 nn
ya a y s    

10 0 40.2 0.2 0.6 nn
ya a y s    

3 1n ns s y y   

This exemplifies an idea,
it is not required for this course.

O(1) run time?

• Everything in this class runs in O(1) time with O(n) memory:

Approximating a point using least-squares best-fitting polynomials

20

This exemplifies an idea,
it is not required for this course.

class Estimate {
public:

Estimate(double y0);

double operator()(double delta) const;
void next(double y);

private:

std::size_t curr_;

double ys_[4];

double a1_, a0_, sum_;

};

void Estimate::next(double y) {

curr_ = (curr_ + 1)%4;

a1_ = a1_ + 0.2*ys_[curr_] - 0.1*sum_ + 0.2*y;

a0_ = a0_ + 0.2*ys_[curr_] - 0.2*sum_ + 0.6*y;

sum_ += y - ys_[curr_];

ys_[curr_] = y;
}

Estimate::Estimate(double y0):

curr_{ 0 },

ys_{ y0, y0, y0, y0 },

a1_{ 0.0 },

a0_{ y0 },

sum_ { 4*y0 } {

// Empty
}

double Estimate::operator()(double delta) const {

return a1_*delta + a0_;
}

Summary

• Following this topic, you now

– Understand that we can easily find formulas for least-squares best-

fitting polynomials if the t-values are equally spaced

– Are aware that with the integer matrices we defined,
it is reasonable to calculate (ATA)–1AT

– Understand that this allows us to find least-squares best-fitting
polynomial coefficients very quickly

– Know that we can use these coefficients to estimate the value of
the function around the current time tn

– Are aware that we can even do this constant run time

Approximating a point using least-squares best-fitting polynomials

21

References

[1] https://en.wikipedia.org/wiki/Least_squares

Approximating a point using least-squares best-fitting polynomials

22

Acknowledgments

None so far.

Approximating a point using least-squares best-fitting polynomials

23

Colophon

These slides were prepared using the Cambria typeface. Mathematical equations
use Times New Roman, and source code is presented using Consolas.
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical Gardens in
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

Approximating a point using least-squares best-fitting polynomials

24

Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.

Approximating a point using least-squares best-fitting polynomials

25

